

GARY PIERCE COMMISSIONER

Direct Line: (602) 542-3933 Fax: (602) 542-5560 E-mail: Pierce-Web@azcc.gov

ARIZONA CORPORATION COMMISSION

Docket #: E-00000XX-13-0214

AZ CORE COMMISSION

Memo

To:

Arizona Corporation Commission, Docket Control

From:

Office of Commissioner Gary Pierce

CC:

Date:

Tuesday, March 18, 2014

Re:

Energy Efficiency & Integrated Resource Planning

ORIGINAL

On Tuesday March 18, 2014 Commissioner Gary Pierce chaired a workshop on Energy Efficiency & Integrated Resource Planning. One of the companies that presented at the workshop distributed a PowerPoint that our office will be docketing to both of the Energy Efficiency dockets.

Arizona Corporation Commission DOCKETED

MAR 1 8 2014

DOCKETED BY

NAVIGANT

ENERGY

practices from across the country Screening: An overview of tests, key inputs, and **Energy-Efficiency Cost-Effectiveness**

Workshop Arizona Corporation Commission Cost-Effectiveness

Phoenix, Arizona

March 18, 2014

©2012 Navigant Consulting, Inc.
Confidential and proprietary. Do not distribute or copy

- » Role of cost-effectiveness tests
- Results drive the type of energy-efficiency (EE) resources acquired
- effective. Arizona and 34 other states require energy-efficiency investments to be cost-
- » What does it mean to be cost-effective?
- Net present value of stream of benefits outweighs net present value of costs.

- The elements included in an analysis depend on the test selected and overseeing the analysis. judgment on the part of regulators and/or the utility or agency
- » Several potential elements:

Benefits

- Avoided energy and capacity costs
- Savings on equipment or labor purchases (negative "costs")
- Bill reductions
- Intangibles / Non-market goods
- Externalities and "Non-Energy Benefits" (e.g., avoided environmental impacts, improved comfort, job creation) may be accounted for in an "adder" or estimated in detail.

Costs

- Purchases of equipment, labor
- Administrative costs
- Increased purchases of energy
- Increases in other costs (e.g., O&M, water)
- Lost revenues

- » Results reported in dollars (NPV), or as a ratio.
- Net Benefits > \$0 mean the program is cost-effective.
- Benefit / Cost ratio > 1 means the program is cost-effective.
- Levelized cost (for PACT, TRC, or SCT):
- \$/kWh or \$/MMBtu saved; \$/kW reduced
- Easy to relate to the cost of energy

Basic approaches for calculating and presenting results of cost-effectiveness tests

NPV $\sum costs_a$ (dollars)	Katio _a	Ratio
= NPV \sum benefits _a (dollars)	Benefit-Cost	Benefit-Cost
= NPV \sum benefits _a (dollars) - NPV \sum costs _a (dollars)	Net Benefits _a (dollars)	Net Benefits (Difference)

Source: National Action Plan for Energy Efficiency (2008). Understanding Cost-Effectiveness of Energy Efficiency Programs: Best Assistance Project. California Standard Practice Manual (2001). Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics, Inc. and Regulatory

- » Five tests have been used since the 1980s as the main tools for screening DSM investments.
- Societal Cost Test (SCT)
- Total Resource Cost Test (TRC)
- Program Administrator Cost Test (PACT)
- Also referred to as Utility Cost Test (UCT)
- Participant Cost Test (PCT)
- Ratepayer Impact Measurement Cost Test (RIM)

ENERGY

Societal Cost Test (SCT)

Asks: Is society better off as a whole?

Compares: Society's costs of energy-efficiency to resource savings, including non-cash costs and benefits.

May use a different discount rate

NPV \$

Benefits of DSM

Externalities

Avoided Cost of Demand (kW - Generation, T&D)

Avoided Cost of Energy (kWh - Fuel and O&M)

> Non-market benefits to society, or benefits that extend beyond a utility's customers.

Primarily environmental improvements, such

as better air/water quality, water savings,

Difficult to quantify.

improved health, etc.

Costs of DSM

Program Costs

Participant Costs

NAVIGANT

Total Resource Cost (TRC) Test

decrease? Asks: Will the total costs of energy in the utility service territory

resource savings. Compares: Program administrator AND customer costs to the utility

savings/lost revenue). Transfers between utility and customer cancel out (incentives and bill

NPV \$

Benefits of DSM

Tax Credits

Avoided Cost of Demand (kW - Generation, T&D)

Avoided Cost of Energy (kWh - Fuel and O&M)

Costs of DSM

Program Costs

Participant Costs

(UCT/PACT) Utility Cost Test/Program Administrator Cost Test

Asks: Are the utility's revenue requirements raised or lowered?

administrator costs) to cost of procuring supply-side resources. Compares: Costs of procuring efficiency resources (program

NPV \$

Benefits of DSM

Avoided Cost of Demand (kW - Generation, T&D)

Avoided Cost of Energy (kWh - Fuel and O&M)

Costs of DSM

Program Costs

Incentives Paid

Rate Impact Measure (RIM) Test

Asks: Will the utility rates increase?

Compares: Administrator costs and bill reductions to supply-side

generation) may be higher. investment (i.e. meeting that same demand with conventional Does not consider that long-term costs of not making that EE

NPV \$

Benefits of DSM

Avoided Cost of Demand (kW - Generation, T&D)

Avoided Cost of Energy (kWh - Fuel and O&M)

Costs of DSM

Program Costs

Incentives Paid

Lost Revenue

Participant Cost Test (PCT)

Asks: Will the participants benefit over the measure life?

Compares: Costs and benefits for the customer installing the measure.

program design. Indicates desirability of program to potential participants, so useful in

NPV \$

Benefits of DSM

Tax Credits

Incentives Received (rebates)

Participant
Bill Savings
(electric, O&M, fuel, water)

Costs of DSM

Participant Costs (i.e., Equipment, Installation, O&M over baseline)

Cost-Effectiveness Test Relationships

Participants

Utility/Ratepayers

Society

Administrator Program Cost Test

Lost Revenues

Participant Cost Test

Impact Measure Ratepayer Test

Total Resource Cost Test

Externalities

Societal Cost Test

ENERGY

Cost Effectiveness Test Inputs

- » Measure Specific Inputs
- Life of Measures (How long the measure lasts)
- Energy and Demand Savings (Baseline vs. EE technology)
- Incremental Cost of Measures (Retrofit vs. New vs. Replacement)
- Other Benefits
- » Program Specific Inputs
- NTG (Free-riders, Free-drivers)
- Allocation of Program Costs
- » Economic/Utility Specific Inputs
- Avoided Costs (Generation, T&D, Fuel and O&M)
- Discount Rate (T-bills, WACC)

When is cost-effectiveness testing used?

- » In market studies for preliminary and final screening
- distinguishes technical and economic potential
- » In program design to incorporate detail characteristics and costs
- » In program evaluation to measure results

ENERGY

Which Test is Most Appropriate?

- Selection of test reflects intended scope, and overall public policy goals driving the analysis. Societal Cost Test is currently used as the primary test in AZ
- Tests with narrower scopes (PCT, RIM, PACT) are helpful during for use as the "primary" tools for evaluating cost-effectiveness program design. However, they are generally considered too limited

How are Other States Using the Tests?

» TRC test is used most frequently, both for general screening purposes, and for use as the "primary" test for decision-making.

Percentage of states using each test

Source: Kushler M., et al. 2012. A National Survey of State Policies and Practices for the Evaluation of Ratepayer-Funded Energy

ENERGY

Conclusions

- » A variety of cost-effectiveness tests are available. Each looks at costeffectiveness from a different perspective
- Selection of test, and decisions about test inputs should reflect public policy goals.
- » Common practice nationally is to use TRC/SCT applied at the program and/or porttolio level.
- It is recognized in many jurisdictions that EE is often the least cost as compared to other resource options resource, and equitable CE analyses are needed to assess this resource

NAVIGANT

ENERGY

Marshall Keneipp | Managing Director Marshall.keneipp@tierrarc.com

NAVIGANT

ENERGY

David Alspector | Project Manager david.alspector@navigant.com

WESTERN RESOURCE ADVOCATES

MARCH 18, 2014: COST-**ENERGY EFFICIENCY WORKSHOP EFFECTIVENESS**

Arizona Corporation Commission Workshops Bnergy Efficiency and Resource Planning (Docket Nos. RE-00000C-09-0427 & E-00000XX-13-0214)

David Berry

TOPICS COVERED IN THIS PRESENTATION

- 0 Several key inputs in cost benefit analysis
- The discount rate
- Two traps to avoid in cost benefit analysis
- 0 Overview of cost effectiveness tests
- Pros and cons
- Tests commissions actually use
- List of useful references

0

ANALYSES DISCOUNTING IN COST EFFECTIVENESS

- o Typically, energy efficiency measures last several years (maybe as long as 30+ years)
- The costs are often incurred up-front while the benefits occur over the lives of the measures
- o Costs and benefits are compared by calculating their present values using a discount rate
- o The discount factor translates the discount rate & time period into a present value.
- For example, \$1,000 of benefits occurring in year 10 discounted at a rate of 8.3% translates into a present value of \$451. The discount factor for 10 years and this interest rate is **0.451**
- \$1,000 of benefits occurring in year 30 (for a long-lasting measure) discounted at a rate of 8.3% translates into a present value of \$91, the discount factor is 0.091.
- o Benefits from measures with long lives are largely ignored after a few years

OF CAPITAL SHOULD NOT BE

- o Under current energy efficiency efficiency program practices, utilities are not investing their capital in energy
- The public is paying for efficiency by foregoing current consumption to obtain long run benefits

respectable choices - you could use any of them What discount rate should be used? Four

1. Consumption rate of interest:

- Assumes all costs raised from deferring consumption
- compensation for delaying consumption Use recent (nominal) Treasury Bond rates to help measure
- o 10 year bond = 2.74%, 20 year bond = 3.40%, 30 year bond = 3.68%
- Federal Reserve December 2013 long run inflation forecast =2%
- Adjust for tax impact ~ 25% to 30% Real, after-tax consumption rate of interest estimated by Moore et al. using historical data is about 1.5% using
- o Using current data, about 1%

long term inflation trends

- What about a risk premium for energy efficiency programs?
- o Not really needed: energy efficiency investments are not especially risky
- o The Commission and the utilities review plans and monitor performing programs are modified or not implemented and evaluate performance regularly so that poorly

2. USE THE CENTRAL TENDENCY OF ESTIMATES MADE BY 2160 ECONOMISTS

Evaluating Environmental Projects Over a Long Time **Economists' Estimates of Real Discount Rates for** Horizon (n = 2,160)

OR USE THE FOLLOWING APPROACHES

3. Optimal growth rate method

- Moore et al. recommend a real discount rate of growth rate of $\sim 2.3\%$ per year and a real rate of time preference of ~1% per year ~3.3% based on historical, long run economic
- o Assumes efficiency investments come out of monthly charge for efficiency programs) current consumption (reasonable given the small

4. Declining discount rates

- Takes into account uncertainty about the discount rate or about future economic conditions
- Weitzman recommends: a real discount rate of 4% in years 1-5, 3% for years 6 to 25, & 2% for years

26-75.

AVOIL TWO COST-BENEFIT ANALYSIS TRAPS TO

Sunk cost trap

- The only costs that can be controlled are future costs – sunk costs cannot be undone.
- Utility fixed costs are sunk costs
- o Decisions and government policies made on the basis of sunk costs constrain or distort economic decisions going forward.
- Such decisions can lock in old technology and discourage innovation

Static analysis trap

- o Do not assume the world stays the same
- o Several factors increase achievable savings:
- Learning (e.g., about roles of partnerships, trust, empowerment, social networks, & personal assistance)
- Widening range of opportunities for efficiency
- Cost changes and technology improvements

("+ "INDICATES BENEFITS, "-" INDICATES COST) OVERVIEW OF TESTS FOR EFFICIENCY PROGRAMS

Test	Participa nt	RIM	TRC	Societal	PACT (UCT)
Measured from perspective of:	Participant	Utility <u>rates</u>	Society exte	Society (including or excluding externalities)	Utility revenue requirement
Avoided or deferred utility energy, capacity, T &D, and ancillary services costs		+	+	+	+
Other benefits	health			environmental & health	
Ancillary benefits (e.g., water svgs)	+		+	+	
Energy bill reductions					
Incremental measure costs: customer portion	ı		ı	•	· · · · · · · · · · · · · · · · · · ·
Incremental measure costs: financial incentive payments					
Program administrative costs					
Utility lost revenues					9

THE SOCIETAL, TOTAL RESOURCE, & USED ALL USEFUL: THE OTHERS SHOULD NOT BE PROGRAM ADMINISTRATOR COST TESTS ARE

Test	Pros	Cons
Societal Cost	Comprehensive: includes all relevant costs and benefits; focus on all of AZ	Some benefits difficult to measure in \$ terms
Total Resource Cost	Similar to Societal Test	Omits some benefits
Program Administrator Cost	May be easiest to implement; consistent with utility resource analyses	Omits some costs and benefits; looks only at benefits & costs affecting utility, not society
Ratepayer Impact Measure	Estimates rate impacts on non-participants	Omits some costs and benefits; concerned with sunk costs; can reject measures which make society better off; many of today's non-participants will be tomorrow's participants
Participant	May help in designing financial incentives	Omits some important costs and benefits

WHAT TESTS HAVE COMMISSIONS USED?

- o The Arizona Corporation Commission has used a total energy efficiency programs for about 25 years. resource cost test or societal cost test for evaluating
- o ACEEE surveyed states to find out the primary test used in each state (n = 41 states)
- 71% use the TRC test as the primary test
- 15% use the SCT as the primary test
- 12% use the PACT test as the primary test
- 2% (1 state) uses the RIM test as the primary test
- o Example of a 2-tiered approach: use the TRC test or all programs passing the primary test use the PACT as a secondary test on the package of SCT as the primary test applied to each program and Many states use secondary tests to inform their decisions

REFERENCES

- 0 California Public Utilities Commission, California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects, October 2001
- 0 and Practices for the Evaluation of Ratepayer-Funded Energy Efficiency Programs, Martin Kushler, Seth Nowak and Patti Witte: A National Survey of State Policies ACEEE Report U122, Feb 2012.
- 0 of Cost-Effectiveness Tests, Prepared for National Home Performance Council, June Robin LeBaron, Measure It Right: Best Practices in the Selection and Implementation
- 0 Journal of Policy Analysis and Management 23 (2004): 789-812. Mark Moore, Anthony Boardman, Aidan Vining, David Weimer, and David Greenberg, "Just Give Me Number!' Practical Values for the Social Discount Rate,"
- 0 Energy Efficiency in Buildings, 5-299 to 5-210. Chris Neme and Martin Kushler, "Is it Time to Ditch the TRC? Examining Concerns with Current Practice in Benefit-Cost Analysis." 2010 ACEEE Summer Study on
- 0 David Pearce, Ben Groom, Cameron Hepburn, and Phoebe Koundouri, "Valuing the Future: Recent Advances in Social Discounting," World Economics 4 (2003):121-141.
- O Synapse Energy Economics, Best Practices in Energy Efficiency Program Screening, Prepared for National Home Performance Council, July 23, 2012.
- 0 260-271. Martin Weitzman, "Gamma Discounting," American Economic Review 91 (2001):
- 0 Western Resource Advocates, A Toolkit for Community Clean Energy Programs,